Superposition and Conservation of Energy

Suppose you prepare a particle in a harmonic oscillator potential in a superposition of two
energy stationary states, for example the n=0 and the n =10 states: ¥(xt) =

% (I/JOe_iEO t/h 4 1, ge "0t/ h). Now measure the energy of the particle, which means that you

apply the Hamiltonian operator H. You will find either E, = hTw or Ejp = % with equal

likelihood. In other words for an ensemble of identically prepared systems, one will find (') =

%(Eo + Ejp) = 12—1hw. OK, but suppose you measure the particle once and find an energy of

h )
ZlTw > 12—1 hw. Where did the extra energy come from?

This illustrates the non-classical nature of a quantum superposition. First, note that the
superposition state is NOT a determinate state for the Hamiltonian. It does not have a fixed
value of energy. One is not justified in asking “where does the energy go/come-from?” upon
measuring the energy of the particle prepared in a superposition of two or more energy
eigenstates.

But what about energy conservation? It survives, but only in an ensemble average form.
Consider the generalized Ehrenfest theorem:
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So “energy conservation” applies only to the Hamiltonian operator expectation value.

Technical detail: Note that W(x,t) = %(1/)06_“50” " 4 hyoe~tF10t/M) s a solution to the time-
dependent Schrodinger equation, but Y(x) = % (Yo + P10) is not a solution to the time-
independent Schrodinger equation! It does not satisfy the equation H = Eip. Try it and see.



